Comprehensive BPF offload

Nic Viljoen & Jakub Kicinski
Netronome Systems

netdev 2.2, Seoul, South Korea
November 8-10, 2017

Agenda

e Refresher

¢ Programming Model

¢ Architecture
e Performance & Optimization

¢ Requirements for Production Offload

e bpftool

¢ \Verifier restructuring

Programming Model (refresher) | NETRONCGME

e Program is written in standard
manner G

L

LLVM

e I VM compiled as normal

User
* iproute/tc loads the program @

requesting offload

bpf syscall

e The nfp_bpf_jit.c converts the
eBPF bytecode to NFP machine
code (and we mean the actual

machine code :)) Kernel
e Translation reuses a significant
amount of verifier infrastructure Hardware

Refresher-BPF Offload Mapping | NETRONGME

10 Registers
(64 bit, 32 bit
subregisters) LMEM (1 KB) (GELKSB)
Thread (x4 per Core)
Driver Core (x60 used for BPF)
512 byte
stack
CTM (256 KB)
Maps, varying [IMEM(4 MB)] ohi
sizes p

DRAM (2GB)

Performance

e Simple XDP load balancer (~ 800 BPF insns, 4 lookups)

e Based on the TC example in kernel - selftests/bpf/l4ib.c

e Combined with samples/bpf/xdp_tx_iptunnel_kern.c
e Per CPU array changed to standard array to run offloaded

e There is no nice equivalent for per CPU at the moment on the NIC
e Not optimised-big health warning :)

Sample Load Balancer

50 [l XDPOFFLOAD (1 Core) Optimized
Maps

40 B XDPOFFLOAD (1 Core)
XDPDRV

30 I XDPDRV/Core

20

Performance (Mpps)

10

0 | (T—
8 Cores DRV

Future Optimizations | NETRONGME

e Map placement/caching-as shown on previous page

e Using Packet Cache-reduce latency of packet accesses from ~50
cycles to ~3 cycles

e 32 bit ALU from LLVM where possible-reduce ALUs from ~ 4 machine
code insns to 1

¢ Remove FW locks-double memory bandwidth

Requirements For Production Readiness | NETRONGME

Multi-stage processing:
» Reliable manner to run some programs in host if not possible/desirable

in offload

Debug:

e Usable verifier error messages
¢ Introspection-both of maps and programs

JIT:

e Translation before optimization

Multi-Stage Processing

» Offload some programs
This can be managed by the driver (implicitly) or explicitly
Use data meta to inject programs into the correct BPF program to run next
» Important for edge case where the next program to run is not fixed

Allows offload to be used for beneficial cases only
« Can be explicitly via flags

NIC Host

Progress made - kernel | NETRONGME

Upstream:

new instructions (Daniel, Jiong, 1);

direct packet access;

stack support;

adjust head helper;

add 32-bit subregister support to LLVM (Jiong).

Prototyped/PoC:

map offload support (hash and array maps);
atomic add operation;

memcpy optimizations (Jiong);

initiate work on register state tracking (Jiong).

Progress made - tooling | NETRONGME

bpftool

in kernel tree for Linux 4.15 (in the tools/ directory);
iproute2-like syntax;
list and pin objects;
programs:
¢ show type, name, tag, id, memory usage, load time, used maps;
e dump JITed and translated images (to file or print instructions);
® maps:
e show type, name, id, key/value size, number of elements, flags;
¢ |ookup, update, delete, etc.
e JSON output (Quentin);
e BPF FS integration (Quentin, Prashant).

Progress made - tooling | NETRONGME

llvm-mc (Jiong)

e upstream for LLVM 6.0;
e | LVM’s macro assembler;
e verifier-style syntax:
ri ro
r2 = oxffeeeeeo 11
call 12
ro = 0
exit
e allows hand-crafting precise BPF programs (or compiling C code into
assembly and modifying it);
e opens way for BPF inline assembly;
e very useful for testing particular instruction sequences.

Kernel basics (refresher)

e program
______ p» type (sk filter, kprobe, cls, xdp) tc XDP
.) license ctrl
user space - * -
—————— BPF-syscall -r-———-------"""""""""""—— sy
kernel space = 00 temena fd fd, skip_* flags fd, skip_* flags
\ J BPF o :
verifier prog :
----- c|s_bpf :
verification . -
host JIT offload -
A object
modification | |+« 4 .- - . :
ndo 'I | driver
HWJIT/ | | nde s
translator tc & RX | XDP TX
. maps -

v

Translation and loading (refresher) | NETRONGME

e program
e type (sk filter, kprobe, cls, xdp) tc XDP
° license ctrl

user space *

kernel space

verifier
(3) Collect state/analyze

- | verification [{*--cc--°----]

" (4) Optimize

- (5) JIT/generate image
v (6) Load image

: HW JIT / ndo B driver
translator 4: Settcup XDP

(2) Re-run the verifier

(1) \ Check HW capabilities and image parameters

Kernel basics (refresher)

° program
______ - e type (sk filter, kprobe, cls, xdp) tc XDP
. ° license ctrl
user space - * -
—————— BPF:syscaII I T T T Ty T T T T T T T T T TR T T T T T T T
kernel space = 00 temena . fd, skip_* flags . fd, skip_* flags
_ TC
verifier
cls_bpf
verification
object
modification | f = = = = = = - .
ndo VI | driver
HW JIT / 4- an Setup StatS
translator |t & RX | XDP TX
v . maps . | |

v

Progress made - kernel

user space

BPF syscall

kernel space

v

find device

v

verifier

verification

modification

e program

e type (sk filter, kprobe, cls, xdp)

° license

BPF prog

A

XDP
tc
ctrl
driver ops \ 4
XDP ‘ TC
cls_bpf
verifier prep
translate .
object
destroy i
| | ndo driver
setup
RX | XDP X tc

Rationale for recent kernel changes | NETRONGME

¢ allow device translator to access the loaded program as-is:
e |Ds/offsets not translated:
e structure field offsets;
e functions;
e map IDs.
e no prolog/epilogue injected;
e no optimizations made;
output errors at program load and map creation time;
make use of access to the verifier log;
include device information in introspection APIs (bpftool);
dump translated image:
e similar to host “dITed image”;
e BPF core already has access to offload state (no longer driver black
box);
e need to report machine info?

Debug and tooling APls | NETRONGME

e netlink extack support in cls_bpf/TC offloads:
e XDP already carries extack for use by the drivers;
e allows easier error reporting at attachment time;
e bpf perf event output - output samples for debugging the datapath;
e simple API for enabling/disabling optimizations:
e verifier/kernel already has some simple optimizations (e.g. lookup
inlining);
e nfp translator already has a few and we expect to add more;
e need to report, enable/disable optimizations with nice granularity;
® maps:
e create maps on the device from the start;
e simplify map load/eviction and locking greatly;
e report errors/resource exhaustion at map creation time.

The end | NETRONGME

Thank youl!

