
Comprehensive BPF offload

Nic Viljoen & Jakub Kicinski
Netronome Systems

netdev 2.2, Seoul, South Korea
November 8-10, 2017

An NFP based NIC (1U)

• Refresher

• Programming Model

• Architecture

• Performance & Optimization

• Requirements for Production Offload

• bpftool

• Verifier restructuring

Agenda

• Program is written in standard
manner

• LLVM compiled as normal

• iproute/tc loads the program
requesting offload

• The nfp_bpf_jit.c converts the
eBPF bytecode to NFP machine
code (and we mean the actual
machine code :))

• Translation reuses a significant
amount of verifier infrastructure

Programming Model (refresher)

Refresher-BPF Offload Mapping

NIC

Chip

Island (x6 per Chip)

Core (x60 used for BPF)

CTM (256 KB)

IMEM(4 MB)

DRAM (2GB)

CLS
(64 KB)

Thread (x4 per Core)

LMEM (1 KB)

GPRs

10 Registers
(64 bit, 32 bit
subregisters)

512 byte
stack

Maps, varying
sizes

Driver

Performance

• Simple XDP load balancer (~ 800 BPF insns, 4 lookups)
• Based on the TC example in kernel - selftests/bpf/l4lb.c

• Combined with samples/bpf/xdp_tx_iptunnel_kern.c
• Per CPU array changed to standard array to run offloaded

• There is no nice equivalent for per CPU at the moment on the NIC
• Not optimised-big health warning :)

Future Optimizations

• Map placement/caching-as shown on previous page

• Using Packet Cache-reduce latency of packet accesses from ~50

cycles to ~3 cycles

• 32 bit ALU from LLVM where possible-reduce ALUs from ~ 4 machine

code insns to 1

• Remove FW locks-double memory bandwidth

Requirements For Production Readiness

Multi-stage processing:
• Reliable manner to run some programs in host if not possible/desirable

in offload

Debug:

• Usable verifier error messages
• Introspection-both of maps and programs

JIT:

• Translation before optimization

© 2017 NETRONOME SYSTEMS, INC. 8CONFIDENTIAL

Multi-Stage Processing

• Offload some programs
• This can be managed by the driver (implicitly) or explicitly
• Use data_meta to inject programs into the correct BPF program to run next

• Important for edge case where the next program to run is not fixed
• Allows offload to be used for beneficial cases only

• Can be explicitly via flags

Progress made - kernel

Upstream:

• new instructions (Daniel, Jiong, I);
• direct packet access;
• stack support;
• adjust head helper;
• add 32-bit subregister support to LLVM (Jiong).

Prototyped/PoC:

• map offload support (hash and array maps);
• atomic add operation;
• memcpy optimizations (Jiong);

• initiate work on register state tracking (Jiong).

bpftool

• in kernel tree for Linux 4.15 (in the tools/ directory);
• iproute2-like syntax;
• list and pin objects;
• programs:

• show type, name, tag, id, memory usage, load time, used maps;
• dump JITed and translated images (to file or print instructions);

• maps:
• show type, name, id, key/value size, number of elements, flags;
• lookup, update, delete, etc.

• JSON output (Quentin);
• BPF FS integration (Quentin, Prashant).

Progress made - tooling

llvm-mc (Jiong)

• upstream for LLVM 6.0;
• LLVM’s macro assembler;
• verifier-style syntax:

• allows hand-crafting precise BPF programs (or compiling C code into
assembly and modifying it);

• opens way for BPF inline assembly;
• very useful for testing particular instruction sequences.

Progress made - tooling

r1 = r6
r2 = 0xff000000 ll
call 12
r0 = 0
exit

Kernel basics (refresher)

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

fd, skip_* flags fd, skip_* flags

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

BPF
prog

verification

Translation and loading (refresher)

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

fd, skip_* flags fd, skip_* flags

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

BPF
prog

(1) Check HW capabilities and image parameters

(2) Re-run the verifier

(3) Collect state/analyze

(4) Optimize
(5) JIT/generate image
(6) Load image

verification

Kernel basics (refresher)

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

fd, skip_* flags fd, skip_* flags

BPF
prog

verification

Progress made - kernel

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ifindex
● ...

verifier

fd

JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

driver

RX TX
ndo

setup
tcXDP

BPF prog

verification

find device
driver ops

XDP

verifier prep

translate

destroy

offload

driver

Rationale for recent kernel changes

• allow device translator to access the loaded program as-is:
• IDs/offsets not translated:

• structure field offsets;
• functions;
• map IDs.

• no prolog/epilogue injected;
• no optimizations made;

• output errors at program load and map creation time;
• make use of access to the verifier log;
• include device information in introspection APIs (bpftool);
• dump translated image:

• similar to host “JITed image”;
• BPF core already has access to offload state (no longer driver black

box);
• need to report machine info?

Debug and tooling APIs

• netlink extack support in cls_bpf/TC offloads:
• XDP already carries extack for use by the drivers;
• allows easier error reporting at attachment time;

• bpf perf event output - output samples for debugging the datapath;
• simple API for enabling/disabling optimizations:

• verifier/kernel already has some simple optimizations (e.g. lookup
inlining);

• nfp translator already has a few and we expect to add more;
• need to report, enable/disable optimizations with nice granularity;

• maps:
• create maps on the device from the start;
• simplify map load/eviction and locking greatly;
• report errors/resource exhaustion at map creation time.

The end

Thank you!

