
XDP Hardware Offload: Current Work, Debugging and Edge Cases

Jakub Kicinski, Nicolaas Viljoen
Netronome Systems

Santa Clara, United States
jakub.kicinski@netronome.com, nick.viljoen@netronome.com

Abstract

This paper is designed to provide an update of the work ongo-
ing with respect to XDP offload to hardware with a focus on the
Netronome Network Flow Processor. This includes proposed
kernel changes, updates to the driver and also the addition of
bpftool for the introspection of programs and maps. Some pro-
posed improvements to the offload infrastructure will be gen-
erally applicable, including bpftool, which provides additional
functionality to non-offloaded programs.

Keywords
eBPF, XDP, offload, fully programmable hardware

Introduction
As discussed at netdev 1.2, the Netronome Flow Processor
(NFP) architecture is well suited for the offload of eBPF.
Since that time there has been extensive work done with
regards to both the implementation in FW as well as mecha-
nisms for offload within the kernel. This paper will provide
an update of:

Infrastructure Enhancements: Rearchitecting the 2nd run
of the verifier, map offload and improving the verifier to
utilise 32-bit ALU instructions

Tools and Debugging: bpftool and its use for the introspec-
tion and testing of programs and maps

Driver Additions: Stack implementation, Minor updates

Future Work: Tails calls and partial offload

Overview of Previous Work
In the previous paper at netdev 1.2 the initial offload model
was explained with the objective of transparency and simplic-
ity stated. The offload was designed so that existing programs
would work with a minimum of change compared with the
implementation for the host. This was done with the model
as shown in fig 1, which involves adding an nfp jit within
the driver. This allows the user to compile the same program,
whether running on the NFP or on the host, the location where
program is loaded can be decided by the use of the xdpoffload
or xdpdrv option in iproute2.

Figure 1: High level model for transparent XDP hardware
offload

The current mechanism for offload is described in fig 2,
whereby a network device driver passes the program through
the verifier a second time to ensure the program is valid for
offload, this is enabled by the callback in the verifier. If this
check is passed, the instructions are optimised and jited to
NFP assembler and loaded onto the NIC where the mapping
of the elements of the BPF machine are fairly simple, fig
3. However, a key issue with this mechanism is that it is
difficult for the driver to provide useful debug information in
this configuration. The section below describes the proposed
architecture that will allow the second pass of the verifier to
provide this information.

Figure 2: Current mechanism for the JITing of the BPF
bytecode when offloaded, note the verifier callback is in the

driver

Figure 3: Mapping of the BPF machine to the NFP’s cores

Current Work
Enhancements of XDP Offload Architecture
There are a number of updates to the general XDP hardware
offload architecture currently underway.

Verifier 2nd Pass: Moving the JIT logic closer to the load
time through a device specific hook, this would ensure
that translation mechanisms and debugging are both sig-
nificantly simplified

Map Offload: How to manage the RCU lock in the offload
case, the proposal would be to use flags to optimise this

LLVM and 32 Bit: Ensuring that 32-bit architectures are
able to utilise recent changes in LLVM through verifier
compatibility with 32-bit ALU instructions

Re-Architecting the Second Verifier Pass Currently the
mechanism for offload is as described in the introduction,
whereby the second pass of the verifier occurs within the
driver. The current proposal would be to move the JIT logic
(verify, optimise and JIT) to close to the load point through
a device-specific hook. This provides significant advantages
due to the fact that it will improve debugging and will also
allow significant simplification of the translation mechanism

since the original, unmodified eBPF bytecode is still avail-
able, context accesses, function calls and map pointer loads
are still not translated. There is also code generation which
happens after the first verifier pass like function ‘inlining’ or
prolog generation. Allowing the device-specific JIT to oper-
ate in the first pass simplifies the work, and make it easier
for users to understand why offload fails (‘using feature X
causes some code generation inside the kernel’ may not be
entirely intuitive to newcomers). The device JIT would also
be able to integrate at this point with the existing verifier log
infrastructure. Accessing the device machine code could then
be accomplished through the existing interface for retrieving
JITed image from the kernel (provided program info is ex-
tended with the ‘JITed for device X’ attribute).

Figure 4: Proposed mechanism for the JITing of the BPF
bytecode when offloaded, note the verifier callback done via

a device-specific hook

Map Offload The map offload requires diverting the map
operations into the driver. One of the challenges is that the
map operations are currently invoked under the RCU lock.
The current way that map calls are made is that they take the
RCU lock before checking the specific callback is invoked,
then once they are done they release the lock. We currently
work around that by busy-waiting for the FW to reply, but it
would be preferable to make the RCU lock optional before
upstreaming our PoC code.

32 Bit Optimisation-LLVM and the Verifier Through re-
cent patches added to LLVM, there is now the ability to gen-
erate 32-bit ALU instructions, as opposed to the ALU64 in-
structions that were previously generated by LLVM in all
cases. This is possible through the use of the subregisters that
are defined within the BPF architecture and ensure the se-
mantics of the original 32-bit ALU operations are preserved.
These do not break compatibility with 64-bit architectures as
it is well defined that these sub-registers zero extend to 64 bit
values when being written to.

Note however that this does not mean that the entire pro-
gram is being converted to 32-bit, if pointers are still 64-bits
wide as there would otherwise be a requirement to define a
register-pair ABI to be handled by the JIT. This would put the
complexity onus on the host JIT. The NFP JIT handles this
by using predefined static register pairs which are handled in

a well defined manner to reduce complexity of any combina-
tion, movement or splitting operations.

To make this work will require some small modifications
in the verifier-such as the use of BPF_W as well as BPF_DW
checks in a few locations. It may also become useful for there
to be more formal data-flow analysis in the verifier as well as
a formal control flow graph, as this will allow further im-
provements in code generation. An example of this would be
tracking the upper half of the 64-bit registers when tracking
their liveness to ensure they are correctly nulled.

Tooling and Debugging
A key aspect of ensuring that BPF offload is production ready
is the tooling and debugging. This however was also a larger
problem within BPF. In particular the introspection of maps
and programs. This led to the development of the bpftool,
which allows the user to show which maps are present within
the system as well as inspect them, delete them and update
them. It is also possible to dump the programs which are
present.

Listing 1: Currently available commands within bpftool
bpftool map show [MAP]

bpftool map dump MAP

bpftool map update MAP

key BYTES value VALUE [UPDATE_FLAGS]

bpftool map lookup MAP key BYTES

bpftool map getnext MAP [key BYTES]

bpftool map delete MAP key BYTES

bpftool map pin MAP FILE

bpftool map help

MAP := { id MAP_ID | mapid MAP_ID | pinned FILE }

PROGRAM := { id PROG_ID | progid PROG_ID | pinned FILE | tag PROG_TAG }

VALUE := { BYTES | MAP | PROGRAM }

UPDATE_FLAGS := { any | exist | noexist }

bpftool program show [PROGRAM]

bpftool program dump xlated PROGRAM file FILE

bpftool program dump jited

PROGRAM [file FILE] [opcodes]

bpftool program pin PROGRAM FILE

bpftool program help

PROGRAM := { id PROG_ID | progid PROG_ID | pinned FILE | tag PROG_TAG }

This tool allows the user to then have significant visi-
bility into what is being offloaded in the case of the use of the
use of a programmable NIC. It is our belief that others will
need this infrastructure also to be able to handle debugging
when offloading BPF

As alluded to above in the previous section, other Future
Plans include the ability to dump outputs in the second pass
of the verifier.

Driver Updates
Stack Offload The stack offload is one of the more chal-
lenging aspects for the JIT to deal with in terms of translation
to the NFP cores, as the processing cores on the NFP do not
contain a stack. This means that the local memory on the NFP
core is used to create a stack. There are a couple of difficulties
presented by this:

1. LMEM is accessed indirectly, a LMEM pointer has to be
moved around to be able to address the correct place in the
stack if the stack is larger than 64 bytes

2. The LMEM is word based, this means that there needs to
be state tracking to ensure the translator is aware of which
byte within the word is currently being pointed at.

We split the stack accesses into 5 cases:

a) Stack access within first 32/64 bytes of the stack to a con-
stant address - one pointer is always pointing at the base of
the stack to allow quicker access, it can be used in shift op-
erations to access up to 32 bytes (unaligned accesses) or in
move operations to access up to 64 bytes (aligned accesses)

b) For unaligned access in the 32 - 64 byte window, the base
pointer can still be used, but it is required to load the words
into a GPR before shifting them

c) Accesses to a known offset beyond 64th byte require load-
ing a LMEM pointer register with the address, once the
pointer is loaded (which costs us up to 5 cycles) we are
back to cases (a) and (b)

d) Accesses which cross the 64 byte boundary have to be
treated specially, because LMEM pointers don?t allow off-
setting across those. This requires the loading of the
LMEM pointer to the actual address and instead of using
the offsetting mode, thereafter an ‘iteration’ mode is used
where the exact value under the pointer can be read and
then the pointer can be incremented or decremented to ac-
cess next LMEM word.

e) For stack addresses which are not known at compilation
time (different paths through the program may use the in-
struction to access different words) it is important to make
sure that all accesses have the same (mis)alignment to 4
bytes (word size) so that the correct series of shifts can
be emitted, thereafter the LMEM pointer with the exact
address computed in the BPF code is loaded and the ‘it-
eration’ mode of the LMEM pointer is used to access
whichever word of data the pointer is referring to.

Once this is handled, implementing the stack is trivial, the
key part of the translation is reusing the verifier state tracking
to understand when registers contain pointers to the stack and
to which offset they are referring. This is an example of why
the offload requires access to the verifier data via callback.

Figure 5: The 5 cases to be handled by LMEM when implementing the BPF stack

Minor Updates Since NetDev 1.2 there have been a num-
ber of small updates to the driver which are worth noting

1. New FW: The amount of BPF processing cores has jumped
to include up to 60/70 cores depending on the silicon used
(previously 40/56)

(a) To accommodate this new production FW, a new ABI
version number has been added to the driver. This will
ensure that only the correct FW will attempt BPF offload

2. Direct Packet Access: This has been upstreamed-currently
this accesses packets in an area of memory known as Clus-
ter Target memory (CTM)

The hardware we are currently focusing on is the
Netronome series of NFP based NICs, however it is hoped
that this will be applied to other fully programmable NPU
based NICs.

Future Work
Handling Tail Calls
Tails Calls will be handled fairly easily by the system, this
will be done by simply adding the programs to the already
JITed image. If a series of programs is jitted and the length
becomes too long for a single code store to handle, it will be
possible to link multiple code stores to increase the amount
of instructions available (each code store is 8k insns).

Partial Offloading
There may be scenarios where certain programs are not de-
sired to be offloaded for a number of reasons
• Instructions used not yet fully supported in NFP, e.g Map

type that is not yet supported
• Semantically preferred, e.g you would prefer to optimize

resources on NFP for other XDP programs

• Resource Requirement e.g Maps may need more than the
possible 2, 8 or 24GB available on the NIC

It is important that the offload is able to handle these
smoothly, which is why a model of partial offload is impor-
tant. The suggestions made for reusing the XDP metadata at
netdev 2.2 may be very useful for this purpose. Another pos-
sibility would be using the driver metadata for this purpose
and injecting the packet at the correct XDP program in the
list in case of tailcalls.

(a) Non-offloaded

(b) Offloaded

Figure 6: Proposed model for partial offload through the use
of metadata to inject packets into correct XDP program

Summary
This paper has shown the current state of XDP offload to HW,
as the model is coming close to production implementations,
visibility and the ability to inspect the offloaded programs and
maps is essential. As well as this, being able to practically
do partial offload in situations where that is applicable en-
sures that XDP offload to HW will be available to more users
and ensure the applicability to more situations where XDP is
used.

