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1. Introduction

Inband Network Telemetry (“INT”) is a framework designed to allow the collection and reporting
of network state, by the data plane, without requiring intervention or work by the control plane.
In the INT architectural model, packets contain header fields that are interpreted as “telemetry
instructions” by network devices. These instructions tell an INT-capable device what state to
collect and write into the packet as it transits the network. INT traffic sources (applications,
end-host networking stacks, hypervisors, NICs, send-side ToRs, etc.) can embed the
instructions either in normal data packets or in special probe packets. Similarly, INT traffic
sinks retrieve (and optionally report) the collected results of these instructions, allowing the



traffic sinks to monitor the exact data plane state that the packets “observed” while being
forwarded.
Some examples of traffic sink behavior are described below:

e OAM - the traffic sink might simply collect the encoded network state, then export that
state to an external controller. This export could be in a raw format, or could be
combined with basic processing (such as compression, deduplication, truncation).

e Real-time control or feedback loops — traffic sinks might use the encoded data plane
information to feed back control information to traffic sources, which could in turn use
this information to make changes to traffic engineering or packet forwarding. (Explicit
congestion notification schemes are an example of these types of feedback loops).

e Network Event Detection - If the collected path state indicates a condition that requires
immediate attention or resolution (such as severe congestion or violation of certain
data-plane invariances), the traffic sinks could generate immediate actions to respond to
the network events, forming a feedback control loop either in a centralized or a fully
decentralized fashion (a la TCP).

The INT architectural model is intentionally generic, and hence can enable a number of
interesting high level applications, such as:
e Network troubleshooting
o L1 traceroute, micro-burst detection, packet history (a.k.a. postcards), trajectory
sampling
e Advanced congestion control
o RCP, XCP, TIMELY
e Advanced routing
o Utilization-aware routing (e.g., CONGA)
e Network data-plane verification

A number of use case descriptions and evaluations are described in the Millions of Little Minions
paper.

2. Terms

INT Header: Any packet header that carries INT information. There are two types of INT
Headers -- Hop-by-hop and Destination (See Section 4.1).

INT Packet. Any packet containing an INT Header.

INT Instruction: Embedded packet instructions indicating which INT Metadata to collect
(defined below). The collected data is written into an INT Header.

INT Source: A trusted entity that creates and inserts INT Headers into the packets it sends. The
INT Headers contain, at minimum, INT Instructions indicating what to collect.

INT Sink: A trusted entity that extracts the INT Headers and collects the path state contained in
the INT Headers. The INT Sink is responsible for removing INT Headers so as to make INT
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transparent to upper layers. (Note that this does not preclude having nested or hierarchical INT
domains.)

INT Transit Hop: A networking device that adds its own INT Metadata to an INT Packet by
following the INT Instructions in the INT Header.

INT Metadata: Information that an INT Source or an INT Transit Hop device inserts into the INT
Header. Examples of metadata are described below.

3. What To Monitor

In theory, one may be able to define and collect any switch-internal information using the INT
approach. In practice, however, it seems useful to define a small baseline set of metadata that
can be made available on a wide variety of devices: the metadata listed in this section
comprises such a set. As the INT specification evolves and the INT technology becomes more
popular, we expect to add more metadata to this INT specification.

Note the exact meaning of the following metadata (e.g., the unit of timestamp values, the
precise definition of hop latency or congestion status) can vary by device for any number of
reasons, including the heterogeneity of device architecture, feature sets, resource limits, etc.
Thus, defining the exact meaning of each metadata is beyond the scope of this document.
Instead we assume the users of INT will communicate the precise meanings of these metadata
for each device model they use in their networks.

Each metadata is encoded as a 4B unsigned value.

3.1. Switch-level Information

e Switch id
o The unique ID of a switch (generally administratively assigned). Switch IDs must
be unique within a management domain.

3.2. Ingress Information

e Ingress portid
o The logical port on which the INT packet was received. The semantics (meaning)
of this value may differ for individual devices. A device may expose physical and
logical port identifiers separately.
e Ingress timestamp
o The device local time when the INT packet was received on the ingress physical
or logical port.

3.3. Egress Information



e Egress port ID
o The ID of the output port via which the INT packet was sent out. The exact
meaning of this value can differ for individual devices, and defining that is beyond
the scope of this document. For example, some devices may encode the physical
port ID, whereas the other may encode the logical port ID. Some other types of
devices can encode both (2B each).
e Hop latency
o Time taken for the INT packet to be switched within the device.
e [Egress port TX Link utilization
o Current utilization of the egress port via which the INT packet was sent out.
Again, devices can use different mechanisms to keep track of the current rate,
such as bin bucketing or moving average. While the latter is clearly superior to
the former, the INT framework does not stipulate the mechanics and simply
leaves those decisions to device vendors.

3.4. Buffer Information

e Queue occupancy
o The build-up of traffic in the queue (in bytes, cells, or packets) that the INT packet
observes in the device while being forwarded.
e Queue congestion status
o The fraction (in percentage or decimal fraction) of current queue occupancy
relative to the queue-size limit. This indicates how much buffer space was used
relative to the maximum buffer space (instantaneously or statically) available to
the queue.

4. Processing INT Headers

4.1. INT Header Types

There are two types of INT Headers, hop-by-hop and destination. A given INT packet may
have either or both types of INT Headers. When both INT Header types are present, the
hop-by-hop type must precede the destination type header.

e Hop-by-Hop type

o Intermediate devices (INT Transit Hops) must process this type of INT Header.
e Destination type

o Destination headers must only be consumed by the INT Sink; intermediate

devices must ignore Destination headers.
o Destination headers can be used for two purposes (for example):
m To enable communication between INT Source and INT Sink.
e INT Source can add a sequence number to detect lost INT
packets.



e INT Source can add the original IP TTL value of an INT packet.
This way, an INT Sink can detect network devices on the path that
do not support INT (and hence failed to add INT metadata) by
checking the difference between the number of INT metadata
instances in the INT Header (i.e., # of INT-compliant hops) and the
decrement of the IP TTL values (i.e., # of physical IP hops).

m To deliver follow-up INT packets to the INT Sinks (see Section 4.2)

e Follow-up packets generated by the slow-path forwarding logic of
a transit-hop switch must carry the original INT instructions but
must not trigger any further INT processing by downstream
devices.

4.2. Handling INT Packets

It is obviously preferable for network devices to process any INT packets strictly within the fast
path, often a hardware based forwarding plane. An ideal system would be able to process INT
instructions with no increase in latency or reduction in forwarding performance, but in some
cases it may be required to process INT packets outside the fast path. This slow-path
processing could be a CPU based control plane, some sideband or alternate hardware assisted
forwarding path, or an arbitrary INT resource. Note that in the case where the INT processing is
done outside the fast path, the device MUST still forward the original packet through the fast
path (i.e. without processing the INT instructions). The implementation of this is not specified,
though it implies the ability to make a copy of the INT packet for slow-path processing or a
similar design. Following the processing of the INT packet in the normal fast-path, the
forwarding plane should generate a trigger toward the slow path (e.g., either a copy of the
original INT packet or a digest of it). Upon receiving the trigger, the slow path should process
the INT Header appropriately, generate a new packet -- called a “follow-up packet” -- containing
the execution results of the INT instructions. The follow-up packet is forwarded separately.

If devices in the network do perform slow-path INT processing, it is possible that a single INT
packet could spawn multiple follow-up packets — and in turn each of these could spawn more
INT processing downstream. Care must be taken to prevent excessive replication. To prevent
the cascading generation of follow-up telemetry packets, all follow-up packets are marked with
a special “exemption” flag. The presence of this flag instructs downstream devices to provide
specific processing. For more specific information, see the option type for INT Source-to-sink
communication messages (Destination type in Section 4.1).

The INT Header of a follow-up packet must contain all the existing INT metadata in the original
packet that was added by the upstream devices, as well as its own local INT metadata.
Follow-up packets must contain enough information (from outer header, inner header, or both of
the original packet) so that the INT sink can correlate the follow-up packets with the original INT
packet. Because INT is not tied to a particular encapsulation protocol, this spec does not dictate
the exact format of a follow-up packet other than its INT portion.



To prevent potential packet ordering issues, it is recommended that an INT device NOT forward
the INT packets themselves via the slow path while processing INT Headers.

5. Header Format and Location

This section specifies the format and location of INT Headers.

5.1. INT over any encapsulation

The specific location (i.e. encapsulation header) for INT Headers are intentionally NOT specified
-- an INT Header can be inserted as an option or payload of any encapsulation type. The only
requirements are that encapsulation header provides sufficient space to carry the INT
information and that both the INT Sources and Sinks can agree on the location of the INT
Headers. The following choices are all potential encapsulations using common protocol stacks,
although the INT user may choose a different encapsulation format if better suited to their needs
and environment.

INT over VXLAN (as a VXLAN option, per GPE extension)
INT over Geneve (as a Geneve option)

INT over NSH (as a NSH option)

INT over TCP (as a TCP option or payload)

INT over UDP (as payload)

For each encapsulation format, we need to reserve a next-header type identifier (e.g., a VXLAN
Next Protocol value, a Geneve Option Class value, or a TCP/UDP port number) to indicate the
presence of an INT Header.

As illustrative examples, we describe two encapsulation formats, both suitable for use in
virtualized data centers:
1. INT over Geneve - Geneve is an extensible tunneling framework, allowing Geneve
options to be defined for INT Headers.
2. INT over VXLAN - Our examples use the VXLAN generic protocol extensions
(draft-ietf-nvo3-vxlan-gpe) to carry INT Headers between VXLAN header and
encapsulated VXLAN payload.

5.2. On-the-fly Header Creation

In the INT model, each device in the packet forwarding path creates additional space in the INT
Header on-demand to add its own INT metadata. To avoid exhausting header space in the case
of a forwarding loop or any other anomalies, it is strongly recommended to limit the number of
total INT metadata fields added by devices.



As with any modification that potentially changes the packet size, this on-the-fly allocation may
“grow” a packet beyond the original MTU, resulting in fragmentation. It is advisable to plan
network/NIC/MTU settings accordingly to leave headroom for the additional headers.

5.3. Header Format

This subsection proposes the INT Header format. Where necessary, we use examples based
on the INT-over-Geneve or INT-over-VXLAN encapsulation formats.

5.3.1. Header Location and Format -- INT over Geneve

Geneve is a generic and extensible tunneling framework, allowing for current and future network
virtualization implementations to carry metadata encoded in TLV format as “Option headers” in
the tunnel header.

Geneve Header:
0 1 2 3
01234567890123456789012345¢678290
+—t—t—F—t—t—F—t—F—t—t—F—F—F—F—t—F—F—F—F -t —F -t —F—F—F -+ —F+—+—

+

-+
|[Ver| Opt Len [O]|C]| Rsvd. | Protocol Type |
tot—t—F—t—t—F—F—t—F—F—t—F—F—F—F—F—F -t —F—F—F—F—F -t —F—F -+ —F+—+—+
| Virtual Network Identifier (VNI) | Reserved |
+—t—t—F—+—+—F—F—+ -+ttt —F+—+—+
| Variable Length Options |
tot =ttt -ttt -ttt —F—F—F -ttt —F -t —F—F -+ —F—F -+ —F—F+—+

e Note we do not need to reserve any special values for fields in the base Geneve header
for INT.

e Users may or may not use INT with Geneve along with VNI (network virtualization),
though using INT with Geneve without network virtualization would be a bit wasteful.

Geneve Option Format:

0 1 2 3
012345678901234567890123456789¢01
Fot =ttt -ttt —F—F—t—F—F—F—F—F—F -t —F—F—F—F—F - —F—F -+ —F—+—+
| Option Class | Type IRIRIR| Length |
+—t—t—F—t—t—F—F -ttt —F—F -ttt —F -t —F—F -t —F+—+—+
| Variable Option Data (INT Metadata Headers and Metadata) |
+—t—t—F—t—F—F—t—F—t—t—F—F—F—F—t—F—F—F—F -t —F—F—F—F - —F—F—F—F—+—F+—+

We need to reserve a unique Option Class value for INT.

We need to reserve two Type values associated with the Option Class for INT -- one for

the hop-by-hop header type and the other for the destination header type (See Section

4.1).

e The variable length option data following the Geneve Option Header carries the actual
INT metadata header and metadata.

e Note the Length field of the Geneve Option header is 5-bits long, which limits a single

Geneve option instance to no more than 124 bytes long (31 * 4). If 124 bytes is



insufficient one could collect different, non-overlapping sets of INT metadata info across
multiple packets.

5.3.2. Header Location and Format -- INT over VXLAN

VXLAN is a common tunneling protocol for network virtualization and is supported by most
software virtual switches and hardware network elements. The VXLAN header as defined in
RFC 7348 is a fixed 8-byte header as shown below.

VXLAN Header:
0 1 2 3

012345678901234567890123456789°01
s e O Hat S S S e s e et

IRIRIRIRITIRIRIR] Reserved |
=ttt —F—F—t—t—t—t—t—t—t—t—F—F—F—F—F—F—F—F—t—t—F—F—t—F—F—F—F—F+—+
| VXLAN Network Identifier (VNI) | Reserved

i R e S et B e e i R

The amount of free space in the VXLAN header allows for carrying minimal network state
information. Hence, we embed INT metadata in a shim header between the VXLAN header and
the encapsulated payload. This is the recommended approach as it allows for carrying more
network state information along an entire path.

The VXLAN header as defined in RFC 7348 does not specify the protocol being encapsulated
and assumes that the payload following the VXLAN header is an Ethernet payload. Internet
draft draft-ietf-nvo3-vxlan-gpe-00.txt proposes changes to the VXLAN header to allow for
multi-protocol encapsulation. We use this VXLAN generic protocol extension draft and propose
a new “Next-protocol” type for INT.

VXLAN GPE Header:

0 1 2 3
0123456789 01234567890123456789°01
+—+—F—F—+—F—+—F—F—-F+—F—F—F—F -+ttt —F -+t —F—F—F—F—+—F+—+
IRIRIRIRII|P|R|R] Reserved | Next Protocol |
+—+—+—F—+—+—F+—F—+—+—F -+

| VXLAN Network Identifier (VNI) | Reserved
+—t—t—F—t—t—F—t—F -ttt —F -t —F—F—F—F -t —F—F—F—F - —F—F—F—F -+ —F+—+

P bit: Flag bit 5 is defined as the Next Protocol bit. The P bit MUST be set to 1 to indicate the
presence of the 8-bit next protocol field.

Next Protocol Values:
0x01: IPv4
0x02: IPv6



0x03: Ethernet
0x04: Network Service Header (NSH)
0x05: In-band Network Telemetry Header (INT Header)

When there is one INT Header in the VXLAN GPE stack, the VXLAN GPE header for the INT
Header will have a next-protocol value other than INT Header indicating the payload following
the INT Header - typically Ethernet. If there are multiple INT Headers in the VXLAN GPE stack,
then all VXLAN GPE headers for the INT Headers other than the last one will carry 0x05 for
their next-protocol values. And, the VXLAN GPE header for the last INT Header will carry a
next-protocol value of the original VXLAN payload (e.g., Ethernet).

To embed a variable-length data (i.e., INT metadata) in the VXLAN GPE stack, we introduce the
INT shim header of which format is as follows. This header follows each VXLAN GPE header for
INT.

INT shim header for VXLAN GPE encapsulation:

0 1 2 3

0123456789 0123456789012345678901

—+—t—F—t—F—F—F—F—Ft—F—F—F—F—F—F—F—F—F—F—F—F -t —F—F—F—F—F—F—F—F—F+—+

Type | Reserved | Length | Next-Protocol |

e e T e e I e at e T T el
Variable Option Data (INT Metadata Headers and Metadata) |

—t—t—F—t—t—F -ttt —F—F—F—F—t—F—F—F—F -t —F—F—F—F - —F -+ —F—+—F+—+

+ — 4+ — &+

e Type: This field indicates the type of INT Header following the shim header. This field
serves the same purpose as the Option Type field in the Geneve Option header for INT
(See Section 5.3.1).

e Length: This is the total length of the variable INT option data and the shim header in
4-byte words.

5.3.3. INT Metadata Header Format

In this section we describe the format for INT metadata headers and the metadata itself. Again
we use INT over Geneve or INT over VXLAN as a reference.

INT Metadata Header and Metadata Stack:

0 1 2 3
012345678901234567890123456789°01
+—t—t—F—t—F—F—t—F—t—t—F—F—F—F—t—F—F—F—F -t —F—F—F—F - —F—F—F—F—+—F+—+
|[Ver |Rep|CIE|R R R R R| Ins Cnt | Max Hop Cnt | Total Hop Cnt |
+—t—t—F—F+—F—F—F—F—Ft—F—F—F—F—F—F—F—F—F—F—F—F -t —F—F—F—F—F—F—F—F—F+—+

| Instruction Bitmap | Reserved

+—t—t—F—t—F—F—t—F—t—t—F—F—F—F—t—F—F—F—F -t —F—F—F—F - —F—F—F—F—+—F+—+
|0 INT Metadata Stack (varying number of fixed-size wvalues) |
+—t—t—F—t—t—F—F—F—t—F—F—F—F -ttt —F -t —F -t —F—F—F—F -+ —F—+—+—+
0] coe |
B e e e



[ 1] Last INT metadata |
+—t—F—F—t+—t—F—F—F—F—F—F—t—F—F—t—F—F—F -t —F—F—F -+ —F—F—F—F—F—F—+—+—+

e Each INT metadata header is 8B long. While each metadata value is always encoded as
a 4B-long value, the metadata stack following the INT metadata header has a varying
length because different packets are delivered through different paths (and hence
different number of hops).

e INT instructions are encoded as a bitmap in the 16-bit INT Instruction field: each bit
corresponds to a specific standard metadata as specified in Section 3.

o bit0 (MSB): Switch ID

bit1: Ingress port ID

bit2: Hop latency

bit3: Queue occupancy

bit4: Ingress timestamp

bit5: Egress port ID

bit6: Queue congestion status

bit7: Egress port tx utilization

o The remaining bits are reserved.

e Each INT Transit device along the path that supports INT adds its own metadata values
as specified in the instruction bitmap immediately after the INT metadata header.

o When adding a new metadata, each device must prepend its metadata in front of
the metadata that are already added by the upstream devices. This is similar to
the push operation on a stack. Hence, the most recently added metadata
appears at the top of the stack.

o If a device is unable to provide a metadata value specified in the instruction
bitmap because its value is not available, it must add a special reserved value
O0x7FFF_FFFF indicating “invalid”.

o If a device cannot add all the number of bytes (i.e., Instruction Count * 4) required
by the instruction bitmap (irrespective of the availability of the metadata values
that are asked for), it must skip processing that particular INT packet entirely.
This ensures that each INT Transit device adds either zero bytes or a fixed/well-
known number of bytes to the INT packet.

e Each metadata includes a BOS (Bottom-of-Stack) bit to indicate whether this entry is the
last metadata instance in the stack or not. The BOS bit should be the most significant bit
of each metadata, whereby the value of 1 indicates the last metadata instance in the
stack.

e The fields in the INT metadata header are interpreted the following way:

o Ver (2b): INT metadata header version. Should be zero for this version.

o Rep (2b): Replication requested. Support for this request is optional. If this value
is non-zero, the device may replicate the INT packet. This is useful to explore all
the valid physical forwarding paths when multi-path forwarding techniques (e.g.,
ECMP, LAG) are used in the network. Note the Rep bits should be used
judiciously (e.g., only for probe packets, not for every data packet). While we
recommend that Rep bits be set only for probe packets, the INT architecture
does not (and perhaps cannot) disallow use of the Rep bits for real data packets.

m 0: No replication requested.

O O O 0O O O O



C (1b):

E (1b):

1: Port-level (L2-level) replication requested. If the INT packet is
forwarded through a logical port that is a port-channel (LAG), then
replicate the packet on each physical port in the port-channel and send a
single copy per physical port.

2: Next-hop-level (L3-level) replication requested. Replicate the packet to
each L3 ECMP next-hop valid for the destination address and send a
single copy per ECMP next-hop.

3: Port- and Next-hop-level replication requested.

Copy.

If replication is indeed requested for data packets, the INT Sink must be
able to distinguish the original packet from replicas so that it can forward
only original packets up up the protocol stack, and drop all the replicas.
The C bit must be set to 1 on each copy, whenever INT transit hop
replicates a packet. The original packet must have C bit set to 0.

C bit must always be set to 0 by INT source

Max Hop Count exceeded.

This flag must be set if a device cannot prepend its own metadata due to
reaching the Max Hop Count. If the Total Hop Count of an incoming INT
packet is identical to the Max Hop Count, the INT device cannot add its
own INT metadata and must set this flag to 1.

R: Reserved bits.
Instruction Count (5b): The number of instructions that are set (i.e., number of
1’s) in the instruction bitmap.

While the largest value of Instruction Count is 31, an INT-capable device
may be limited in the maximum value of Instruction Count it supports, in
which case it would cease processing an INT packet with a higher
Instruction Count .

Max Hop Count (8b): The maximum number of hops that are allowed to add their
metadata to the packet. If Total Hop Count (see below) equals Max Hop Count, a

device

must ignore the INT instruction, pushing no new metadata onto the stack.

Total Hop Count (8b): The total number of hops that added their metadata
instance(s) to the INT packet.

The INT Source must set this value to zero upon creation of an INT
metadata header, and each INT-capable device on the path must
increment the Total Hop Count as it pushes its local metadata onto the
stack.

Summary of the field usage
The INT Source must set the following fields::

O

o

Ver, Rep, C, Instruction Count, Max Hop Count, Total Hop Count (0), and
Instruction Bitmap

Intermediate devices can set the following fields:

C, E, Total Hop Count

In an INT packet, the length (in bytes) of the INT metadata stack must always be
(Instruction Count * 4 * Total Hop Count).



5.4. Examples

This section shows example INT Headers. The assumptions made for this example are as
follows.

==> packet P travels from Hostl to Host2 ==>
Hostl —-——————- > Switchl -—-—-—-—-———- > Switch2 —-—-——————- > Switch3 --———-——- >* Host2

Two hosts (Host1 and Host2) communicate through a network path composed of three network
devices -- Switch1, 2, and 3. The example in this section shows INT Headers attached to data
packet P forwarded by Switch3 and received by Host2 (marked as * in the diagram above); the
INT Source of this data packet is Host1, and the INT Sink is Host2. The INT metadata attached
to this packet are the switch ID (sw id) and queue occupancy (q len) from every switch on the
forwarding path from Host1 to Host2.

While it is not the scope of this spec, we assume in this particular example that Host1 also
delivers the INT metadata (queue occupancy) collected via a previous packet it received from
Host2 by piggybacking the data onto packet P. We assume that Host1 uses the destination-type
INT Header for that because intermediate devices must ignore such a header type. We also
assume that Host1 uses the same INT metadata header format for the piggybacked INT
metadata just for convenience.

The following is the detailed assumption made for this example.

e As an INT Source, Host1 wants to collect switch id and queue occupancy from each
device on the path. It uses the hop-by-hop-type INT Header to do so.

e As an INT Sink, Host1 wants to piggyback the queue occupancy values collected from
the Host2-to-Host1 path onto the data packet sent back to Host2. It uses the
destination-type INT Header.

e There are three devices (hops) on the path, and all the devices can expose both
metadata (switch id and queue occupancy).

e The devices use the most significant bit of each metadata to indicate BOS (bottom of
stack).

e The INT metadata header uses the following field values in the metadata header.

Ver=0

Rep = 0 (No replication)

C=0

E = 0 (Max Hop Count not exceeded)

Instruction Count = 2 (for switch id & queue occupancy)

Max Hop Count = 16 (network diameter)

e The piggybacked metadata header happens to use the same INT metadata header
format with the following field values. Again, note this is only for example; we do not
propose any designs for the piggybacked metadata format other than that this is out of
the scope of this document and that we should reserve a special option type for this kind
of data (i.e., INT Source-to-sink data).

o Ver=0
o Rep =0 (No replication)

o O O O O O



C=0

E = 0 (Max Hop Count not exceeded)
Instruction Count = 1 (for queue occupancy)
Max Hop Count = 16 (network diameter)

O O O O

Example with Geneve encapsulation

We first consider a scenario where Host1 and Host2 are using Geneve encapsulation and the
intermediate switches parse the Geneve headers and populate INT metadata.

We assume Geneve option class of 0xO0AB for INT. We also assume that the Geneve option
type value for the hop-by-hop INT Header type (i.e., the one that intermediate switches must
process) is 1, and that the type value for the destination INT Header is 2.

The following is the Geneve and INT Headers attached to the packet received by Host2.

Geneve Header:
0 1 2 3

0123456789 01234567890123456789°01
e S e e aat S L

|[Ver| OptLen=15 |0O|C| Rsvd. | Protocol Type=EtherType |
+—t—F—F—t—t—F—F—F—F—F—F—F—F—F -t —F—F—F -t -t —F—F -+ —F—F—F—F—F—F—+—+—+
| Virtual Network Identifier (VNI) | Reserved |

t—t—t—t—F—t—t—t—t—t—t—t—t—t—F—F—F—F—F—F—F—F—t—t—t—F—t—F—F—F—F—F+—+
[INT Metadata - info about the path from Hostl to Host2]

Geneve Option for Switch ID metadata:
0 1 2 3
0123456789 01234567890123456789°01
s e e e e B e R e St
| Option Class=0x00AB | Type=1 IRIRIR| Len=8 |
F—t—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F -+ -+ —+—+

INT Metadata Header and Metadata Stack:

0 1 2 3
0123456789 01234567890123456789°01
S T et S s Sk S S RS

|Ver |Rep|C|E| R | InsCnt=2| MaxHopCnt=16 | TotalHopCnt=3 |
=ttt —F—F—t—t—t—t—t—t—t—t—F—F—F—F—F—F—F—F—t—t—t—t—t—t—F—F—F—F+—+
/11001 0000O0O0O0OOOO0OO0DO0] Reserved |

+—+—+—F—F—F-+-+—+—+—+—+—+—+—+—+—F+—F—F—F -+t -+ -+ —F+—+—+—+
[0 sw id of hop3 (sw3) |
+—t—F—F—F—F -ttt -ttt -t —F—F—F—F—F—F—F—F -+~ —F—F+—F+—+
| 0] queue occupancy of hop3 (sw3) |
+—+—+—F—F—F-+-+—+—+—+—+—+—+—+—+—F+—F—F—F -+t -+ -+ —F+—+—+—+



[ 0] sw id of hop2 (sw2) |
e e M e e e s T e s I
[0] queue occupancy of hop2 (sw2) |
+—t—t—F—t—t—F—F—F—t—F—F—F—F -ttt —F -t —F -t —F—F—F—F -+ —F—+—+—+
[ 0] sw id of hopl (swl) |
e e M e e e s T e s I
[ 1] queue occupancy of hopl (swl) |
+—t—t—F—t—t—F—F—F—Ft—t+—F—F—F -ttt —F -t —F -t —F—F—F—F -+ —F—+—+—+

[Piggybacked metadata - info about the path from Host2 to Hostl]

Geneve Option for queue occupancy metadata:
0 1 2 3
0123456789 01234567890123456789°01
+—+—F—F—+—F—F+—F—F—-F+—F—F—F—F -t —F—F—F—F -+t —F—F—F—F—+—F+—+
| Option Class=0x00AB | Type=2 IRIR|R| Len=5 |
e e M e e e s T e s I

INT Metadata Header and Metadata Stack:
0 1 2 3

012345678901234567890123456789°01
s e O Hat S S S e s e et

|Ver |Rep|CI|E| R | InsCnt=1| MaxHopCnt=16 | TotalHopCnt=3 |
tot—t—F—t—t—F—F—t—F—F—t—F—F—F—F—F—F -t —F—F—F—F—F -t —F—F -+ —F+—+—+
/0001 000000O0O0COO0O0O0] Reserved |

tot =ttt -ttt -ttt —F—F—F -ttt —F -t —F—F -+ —F—F -+ —F—F+—+
[0] queue occupancy of hop3 (swl) |
tot—t—F—t—t—F—F—t—F—F—t—F—F—F—F—F—F—t—F—F—t—F—F—F -t -t —F -+ —F—+—+
[0 queue occupancy of hop2 (sw2) |
tot =ttt -ttt -ttt —F—F—F -ttt —F -t —F—F -+ —F—F -+ —F—F+—+
[ 1] queue occupancy of hopl (sw3) |
tot—t—F—t—t—F—F—t—F—F—t—F—F—F—F—F—F—t—F—F—t—F—F—F -t -t —F -+ —F—+—+

Example with VXLAN GPE encapsulation

We now consider a scenario where Host1 and Host2 use VXLAN encapsulation, intermediate
switches parse through VXLAN header and the INT shim between VXLAN header and
encapsulated payload and populate the INT metadata.

The packet headers received at Host 2 are as follows, starting with the VXLAN header
(encapsulating ethernet, IP and UDP headers are not shown here):

0 1 2 3
0123456789 01234567890123456789°01
+—t—t—F—F—F—F—t—t—t—F—+—+—t+—F—F—F—F—F—F—F—F -ttt -+t -+ -+ —F+—+—+
IRIRIRIRI1|1|R|R]| Reserved | NextProto=0x5 |
-ttt -ttt —F—F—F—F—F—F—F -ttt —F—F+—+—+



| Type=1

VXLAN Network Identifier (VNI) |
-ttt -ttt -ttt —F—F—F—F—F—F ==ttt —F—F—+—+

Reserved |  Length=9 |

Reserved

NextProto=0x5

e e s K ity o s s e S

|Ver |[Rep|CI|E|

R

| InsCnt=2| MaxHopCnt=16 |

TotalHopCnt=3

e S T et S e s Sk S S RS

[1 0010000O0O0O0COCOOO O]

Reserved

e e s K ity o s s e S

0]

sw id of hop3

e S T et S e s Sk S S RS

[0

queue occupancy of hop3

e e K ity o s s e S T

0]

sw id of hop2

e S T et S e s Sk S S RS

[0

queue occupancy of hop?2

e e K ity o s s e S T

0]

sw id of hopl

e S T et S e s Sk S S RS

[1]

queue occupancy of hopl

e e K ity o s s e S T

| Type=2

Reserved | Length=6 |

NextProto=0x3

e S T et S e s Sk S S RS

|[Ver|Rep|CI|E|

R

| InsCnt=1| MaxHopCnt=16 |

TotalHopCnt=3

e e K ity o s s e S T

/0001 000O0O0O0OO0O0OGOOO0]

Reserved

S T et S s Sk S S RS

[0

queue occupancy of hop3 (swl)

e e K ity o s s e S T

0]

queue occupancy of hop2 (sw2)

S T et S s Sk S S RS

[1]

queue occupancy of hopl (sw3)

e e K ity o s s e S T

Encapsulated Ethernet Payload

S T et S s Sk S S RS
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Appendix 1: An extensive (but not exhaustive) set of Metadata

Switch-level Information

e Switch id
o The unique ID of a switch (generally administratively assigned). SwitchIDs must
be unique within a management domain.
e Control plane state version number
o Whenever a control-plane state changes (e.g., IP FIB update), the switch control
plane can also update this version number in the data plane. INT packets may
use these version numbers to determine which control-plane state was active at
the time packets were forwarded.

Ingress Information

e Ingress port id
o The logical port on which the INT packet was received. The semantics (meaning)
of this value may differ for individual devices. A device may expose physical and
logical port identifiers separately.
e Ingress timestamp
o The device local time when the INT packet was received on the ingress physical
or logical port.
e Ingress port RX pkt count
o Total # of packets received so far (since device initialization or counter reset) on
the ingress physical or logical port where the INT packet was received.
e Ingress port RX byte count
o Total # of bytes received so far on the ingress physical or logical port where the
INT packet was received.
e Ingress port RX drop count
o Total # of packet drops occurred so far on the ingress physical or logical port
where the INT packet was received.
e Ingress port RX utilization
o Current utilization of the ingress physical or logical port where the INT packet
was received. The exact mechanism (bin bucketing, moving average, etc.) is
device specific and while the latter is clearly superior to the former, the INT
framework leaves those decisions to device vendors.

Egress Information

e Egress physical port id
o The ID of the port via which the INT packet was sent out.
e Egress timestamp



o Device local time capturing when the INT packet leaves the egress port.
Egress port TX pkt count
o Total # of packets forwarded so far (since device initialization or counter reset)
through the egress physical or logical port where the INT packet was also
forwarded.
Egress port TX byte count
o Total # of bytes forwarded so far through the egress physical or logical port
where the INT packet was forwarded.
Egress port TX drop count
o Total # of packet drops occurred so far on the egress physical or logical port
where the INT packet was forwarded.
Egress port TX utilization
o Current utilization of the egress port via which the INT packet was sent out.

Buffer Information

Queue id
o The id of the queue the device used to serve the INT packet.
Instantaneous queue length
o The instantaneous length (in bytes, cells, or packets) of the queue the INT packet
has observed in the device while being forwarded. The units used need not be
consistent across an INT domain, but care must be taken to ensure that there is
a known, consistent mapping of {device, queue} values to their respective unit
{packets, bytes, cells}.
Average queue length
o The average length (in bytes, cells, or packets) of the queue via which the INT
packet was served. The calculation mechanism of this value is device specific.
Congestion status
o The ratio of the current queue length to the configured maximum queue limit.
This value is used primarily to determine how much space is left in the queue.
Queue drop count
o Total # of packets dropped from the queue



Appendix 2: P4 program for the INT example (INT over VXLAN
GPE)

This program is work in progress.

/********************************************************************

* headers.pi
*******************************************************************/
/* VxLan GPE shim header */
header type vxlan gpe int header t ({
fields {
int type

~e

rsvd

~e

len

~e

O O O O

~e

next proto

/* INT headers */
header type int header t {
fields {
ver

~e

rep

~e

e}

~e

e

~e

rsvdl

~e

ins_cnt

~e

max hop cnt
total hop cnt

~e

/* split the bits for lookup */

~e

instruction mask 0003
instruction mask 0407

~e

instruction mask 0811

~e

instruction mask 1215

R s D D > 00O 0 U1 O NN

oY ~e
~e

rsvd?2

/* INT meta-value headers - different header for each value type */
header type int switch id header t ({
fields {
bos 1,
switch id : 31;

}

header type int ingress port id header t {



fields {
bos : 1
ingress port id : 31;

}
header type int hop latency header t {

fields {
bos : 1;
hop latency : 31,

}

header type int g occupancy header t {

fields {
bos : 1;
g_occupancy : 31,

}

header type int ingress tstamp header t {

fields {
bos : 1;
ingress_ tstamp : 31,

}
header type int egress port id header t {

fields {
bos : 1;
egress_port id : 31,

}

header type int g congestion header t ({

fields {
bos : 1;
g_congestion : 31,

}
header type int egress port tx utilization header t ({
fields {
bos : 1;
egress_port tx utilization : 31;



/********************************************************************

* parser.pé
*******************************************************************/
#define VXLAN GPE NEXT PROTO INT 0x0805 mask 0x08ff
#define UDP_PORT VXLAN GPE 4790
parser parse udp {
extract (udp) ;
set metadata(l3 metadata.lkp 14 sport, latest.srcPort);
set metadata (13 metadata.lkp 14 dport, latest.dstPort);
return select (latest.dstPort) {
UDP_PORT VXLAN : parse vxlan;
UDP PORT VXLAN GPE : parse vxlan gpe;
default: ingress;

header vxlan gpe t vxlan gpe;
parser parse vxlan gpe {
extract (vxlan gpe);
set metadata (tunnel metadata.ingress tunnel type,
INGRESS_TUNNEL TYPE VXLAN GPE);
set metadata (tunnel metadata.tunnel vni, latest.vni);
return select (vxlan gpe.flags, vxlan gpe.next proto) {
VXLAN GPE NEXT PROTO INT : parse gpe int header;
default : parse inner ethernet;

/* INT headers */

header int header t int header;

header int switch id header t int switch id header;
header int ingress port id header t int ingress port id header;
header int hop latency header t int hop latency header;
header int g occupancy header t int g occupancy header;
header int ingress tstamp header t int ingress tstamp header;
header int egress port id header t int egress port id header;
header int g congestion header t int g congestion header;

header int egress port tx utilization header t
int egress port tx utilization heade;
header vxlan gpe int header t vxlan gpe int header;

parser parse gpe int header ({
// GPE uses a shim header to preserve the next protocol field
extract (vxlan gpe int header);
set metadata (int metadata.gpe int hdr len, latest.len);
return parse int header;



parser parse int header ({
extract (int_header);
set metadata (int metadata.instruction cnt, latest.ins cnt);
return select (latest.rsvdl, latest.total hop cnt) {
// reserved bits = 0 and total hop cnt == 0
// no int values are added by upstream
0x000: ingress;
// use an invalid value below so we never transition to
// the state
0x100: parse _all int meta value heders;
default: ingress;

parser parse all int meta value heders {
// bogus state.. just extract all posiible int headers in the
// correct order to build the correct parse graph for deparser
extract (int _switch id header);
extract (int ingress port id header);
extract (int_hop latency header);

(
(
extract (int g occupancy header);
extract (int_ingress_ tstamp header);
extract (int egress port id header);
extract (int g congestion header);
extract (int egress port tx utilization header);

return ingress;

/********************************************************************

* tables, actions, and control flow
*******************************************************************/

control egress {
// snip

apply (int insert) {
int transit {
/*
* int transit computes, insert cnt = max hop cnt -
* total hop cnt
* (cannot be -ve, not checked)
*/
if (int metadata.insert cnt != 0) {
apply (int _inst 0003);



int inst 0407);
int inst 0811);
int inst 1215);
int bos);

apply
apply
apply
apply

o~ o~ o~ —~

/* update E-bit or total hop cnt in the INT header */
apply (int meta header update);

// snip

if (int metadata.insert cnt != 0) {
apply (int outer encap);

action int transit(switch id) {
subtract (int metadata.insert cnt, int header.max hop cnt,

int header.total hop cnt);
modify field(int metadata.switch id, switch id);
shift left(int metadata.insert byte cnt,
int metadata.instruction cnt, 2);
modify field(int metadata.gpe int hdr len8, int header.ins cnt);

action int reset () {
modify field(int metadata.switch id, 0);
modify field(int metadata.insert byte cnt, 0);

(

(

(
modify field(int metadata.insert cnt, 0);
modify field(int metadata.gpe int hdr len8, 0);
modify field(int metadata.gpe int hdr len, 0);
modify field(int metadata.instruction cnt, 0);

table int insert {

/*

* This table is used to decide if a given device should act as

* INT transit, INT source(not implemented) or not add INT
information

* to the packet.

* int sink takes precedence over int src

* {int src, int sink, int header}

* 0, 0, 1 => transit => insert cnt = max-total



* 1, 0, 0 => insert (src) => Not implemented here

* x, 1, x => nop (reset) => insert cnt = 0
* 1, 0, 1 => nop (error) (reset) => insert cnt = 0
* miss (0,0,0) => nop (reset)
*/
reads {
int metadata iZe.source : ternary;
int metadata iZe.sink : ternary;
int header : valid;

}

actions {
int transit;
int reset;

}

size : 2;

/* action functions for bits 0-3 combinations, 0 is msb, 3 is lsb */

/* Each bit set indicates that corresponding INT header should be

added */

action int set header 0003 1i0() {

}

action int set header 0003 i1 () {
int set header 3();

}

action int set header 0003 12() {
int set header 2();

}

action int set header 0003 i3 () {
int set header 3();
int set header 2();

}

action int set header 0003 14 () {
int set header 1();

}

action int set header 0003 1i5() {
int set header 3();
int set header 1();

}

action int set header 0003 i6() {
int set header 2();
int set header 1();

}

action int set header 0003 17() {
int set header 3();
int set header 2();
int set header 1();



}

action int set header 0003 18 () {
int set header 0();

}

action int set header 0003 _1i9() {
int set header 3();
int set header 0();

}

action int set header 0003 i10() {
int set header 2();
int set header 0();

}

action int set header 0003 111 () {
int set header 3();
int set header 2();
int set header 0();

}

action int set header 0003 112() {
int set header 1();
int set header 0();

}

action int set header 0003 113() {
int set header 3();
int set header 1();
int set header 0();

}

action int set header 0003 i14() {
int set header 2();
int set header 1();
int set header 0();

}

action int set header 0003 115() {
int set header 3(

int set header 2();

4

I4

)
()
int set header 1 ()
int set header 0()

/* Table to process instruction bits 0-3 */
table int inst 0003 {
reads {
int header.instruction mask 0003 : exact;
}
actions {
int set header 0003 i0;
int set header 0003 il;
int set header 0003 i2;



int set header 0003 i3;
int set header 0003 i4;
int set header 0003 i5;
int set header 0003 i6;
int set header 0003 i7;
int set header 0003 i8;
int set header 0003 1i9;
int set header 0003 i10;
int set header 0003 ill;
int set header 0003 i12;
int set header 0003 1i13;
int set header 0003 il4;
int set header 0003 il5;
}

size : 16;

/* Similar table is used for instruction bit 4-7 */

/*
* BOS bit - set bottom of stack bit for the bottom most header added
* by first hop INT device
*/
action int set header 0 bos() { /* switch id */
modify field(int switch id header.bos, 1);

}

action int set header 1 bos() { /* ingress port id */
modify field(int ingress port id header.bos, 1);

}

action int set header 2 bos() { /* hop latency */
modify field(int hop latency header.bos, 1);

}

action int set header 3 bos() { /* g occupancy */
modify field(int g occupancy header.bos, 1);

}

action int set header 4 bos() { /* ingress tstamp */
modify field(int ingress tstamp header.bos, 1);

}

action int set header 5 bos() { /* egress port id */
modify field(int egress port id header.bos, 1);

}

action int set header 6 bos() { /* g congestion */
modify field(int g congestion header.bos, 1);

}

action int set header 7 bos() { /* egress port tx utilization */
modify field(int egress port tx utilization header.bos, 1);



table int bos {

reads {
int header.total hop cnt : ternary;
int header.instruction mask 0003 : ternary;
int header.instruction mask 0407 : ternary;
int header.instruction mask 0811 : ternary;
int header.instruction mask 1215 : ternary;

}

actions {
int set header 0 bos;
int set header 1 bos;
int set header 2 bos;
int set header 3 bos;
int set header 4 bos;
int set header 5 bos;
int set header 6 bos;
int set header 7 bos;

nop;
}

size : 16; /* number of instruction bits */

/* update the INT metadata header */
action int set e bit () {
modify field(int header.e, 1);

action int update total hop cnt() {
add to field(int header.total hop cnt, 1);

table int meta header update {
/*
* This table is applied only if int insert table is a hit, which
* computes insert cnt
* E bit is set if insert cnt == 0 => cannot add INT information
* Else total hop cnt is incremented by one
*/
reads {
int metadata.insert cnt : ternary;
}
actions {
int set e bit;
int update total hop cnt;



size : 1;

action int update vxlan gpe ipv4 () {
add to field(ipv4.totalLen, int metadata.insert byte cnt);
add to field(udp.length , int metadata.insert byte cnt);
add to field(vxlan gpe int header.len,

int metadata.gpe int hdr len8);

}

table int outer encap {
/*
* This table is applied only if it is decided to add INT info
* as part of transit or source functionality
* based on outer (underlay) encap, vxlan-GPE in this example,
* update outer headers, IP/UDP total len etc.
* {int src, vxlan gpe, egr_ tunnel type}

* 0, 0, X : nop (error)

* 0, 1, X : update vxlan gpe int (transit case)

* 1, 0, tunnel gpe : add update vxlan gpe int

* 1, 1, X : add update vxlan gpe int

* miss => nop

*/

reads {

ipvé : valid;
vxlan gpe : valid;
int metadata iZe.source : exact;
tunnel metadata.egress tunnel type : ternary;

}
actions {
int update vxlan gpe ipv4;
nop;
}
size : INT UNDERLAY ENCAP TABLE SIZE;

/* End of Code snippet */



Changelog / Release History

Date Changes / Notes
2015-09-28 initial release
2016-06-19 Changes:

e Updated section 5.3.2, the Length field definition of VXLAN GPE shim
header, to be consistent with the example of page 15.




